
HW #6: Hints

Robin Blume-Kohout

October 4, 2000

1 Period of Oscillation in a Power-Law Potential

First of all, since the problem only asks you to find the period of oscillation,
you don’t need to find x(t). In fact, you can’t. Just use energy conservation
to calculate xmax and xmin for the particle, and to find ẋ(x). Then use the
fact that dt = dt

dx (how can you find dt
dx?) to set up an integral for part of

the period (it’s easier to do a fraction of the whole period than the whole
thing at once; just calculate the total period from this particular fraction.)

You’ll have to do a substitution to get the integral into the following
form: ∫ 1

0

y
1
n
−1dy√

1− y

Of course, everyone learned that integral in junior high school. Not. It’s
a β function, with the property

β(p, q) ≡
∫ 1

0
tp−1 (1− t)q−1 dt =

Γ(p)Γ(q)
Γ(p+ q)

If you don’t know what the Γ function is, it’s much like the factorial function
– specifically, Γ(n+ 1)=n! for all integer n > 0. However, the Γ function is
also defined at non-integer n; it’s defined as:

Γ(x) ≡
∫ ∞

0
tx−1e−tdt

Who would have thought that would give you a factorial? Anyway, you
don’t need to know all that for the problem, but it’s good to know about
Gamma functions. The only thing you need to know is that Γ(1

2) =
√
π.
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2 Underdamped Oscillator

You should find the Green’s function for the underdamped oscillator in the
lecture notes. Recall that because the oscillator is linear,

D
∑
i

xi(t) =
∑
i

Fi
m

(t)

if xi(t) is the solution to the driving term Fi
m (t). Thus, if you have the

solution to a delta function driving term:

D
[
G(t− t′)

]
= δ(t− t′)

then by writing an arbitrary driving term as F (t) =
∫∞
−∞ F (t′)δ(t− t′)dt′,

we can write the solution as

x(t) =
∫ t

−∞
F (t′)G(t− t′)dt′

The reason for not letting the upper limit of integration go to∞ is to deftly
include the requirement that G(t) = 0 for t < 0. That makes sense, right?
– it just means that a driving force that happens at t = 0 cannot cause
motion at t < 0. Alternatively, if t′ is later than t, then a driving force at t′

can’t cause motion at t. It’s easier to change the limit of integration than to
explicitly make G(t < 0) = 0 – look in the notes and you’ll see that G(t− t′)
has a nice functional form as long as you implicitly add the assumption that
G(t < 0) = 0.

Finally, once you’ve set up the integral, I recommend you do a slight
substitution to set the origin of time t = 0 to a convenient locale. From
there it’s just math (though the answer is rather heinous). Once you get an
answer, you may wish to check the answer in the solution set, and fix any
mistakes you find (better than me correcting them when I grade, ’cause this
way you get your feedback immediately!)

3 Perturbation Theory for a Nonlinear Oscillator

Your strategy is as follows (this is the fundamental method of “perturbation
theory” in any branch of physics). Assume that λ is a small number, so that
λ2 is much smaller than λ. Then, since you don’t know the solution, you
can quite generally write it as a power series in λ – that is,

x(t) = x0(t) + λx1(t) + λ2x2(t) + . . .
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but you immediately decide to ignore all terms with more than one power of
λ throughout the solution (that’s what’s meant by “accurate to first order”),
so x(t) = x0(t) + λx1(t).

Now plug it into the differential equation, expand things out, and ditch
all the λ2 and λ3 terms (etc, etc). Once you’ve got your equation to 1st
order in λ, you can separate into two equations, one of which has terms
with no powers of λ and one of which has terms proportional to λ, on the
philosophy that this has to be valid no matter what the value of λ is. Think
of it as similar to taking a complex equation with real and imaginary parts
and separately solving for the real and imaginary parts.

Anyway, one of those equations will give you a solution for x0(t). (Don’t
forget to match initial conditions!) You can take that solution and plug it
into the other equation. You get another equation that’s familiar, but with a
weird driving term. Specifically, it has an absolute value in it! Just consider
separately the first half-period where the term in |f(t)| is equal to f(t) and
the second half-period where |f(t)| is equal to −f(t).

You may want to guess a particular solution of the form x1p(t) = A +
B cos 2ω0t. Then add the homogenous solution x1h(t) and match boundary
conditions. That should give you x1(t) for the first half-period... now do
it for the other half-period when the driving force changes because of the
absolute value.

When matching boundary conditions, use the fact that x and ẋ must be
continuous if there is no infinite force!

Finally, when you’ve done all this for the 2nd half-period, see what you
end up with at t = 2πω0. See how this frees you from solving the problem
over and over again for each and every succeeding half-period. Hint (sub-
hint?): the oscillator is damped.

4 Particles w/Gravitational Force

First of all, as always occurs with central-force problems, you’ll want to
view this as an effective one-body problem – r is the distance between an
“effective particle” of mass µ = m1m2

m1+m2
. You should be able to find the

period of the orbit in terms of the radius R of the orbit, using a simple 7A
argument about uniform circular motion.

If you’re confused by the statement of the problem, then rest assured that
when the particles are “stopped in their orbits,” they are instantaneously
placed at rest : v = 0. So you can use energy conservation to find ṙ(r) as
in problem (1), and use a very similar integration technique (remember the
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β function?) to find Tcollision. To obtain the final answer, use the values
of the Γ function that I gave you in problem (1), together with the fact
(generalized from the factorial function) that

Γ(x+ 1)
Γ(x)

= x

5 Space Explosions!

This is a pretty straightforward problem – I don’t think you’ll need much
help. However, you may want to consider the implications of the virial
theorem (see notes) for the relative kinetic energy of a nose cone in circular
and parabolic orbits. What does this imply for the change in momentum
of the nose cone? and therefore for the change in momentum of the service
module, which (I remind you) falls “directly,” or straight, into the sun. Use
conservation of momentum to find the relative masses.

6 Central Power Law Potential

First of all, try playing around with the equations that you have in order
to write the total energy of the particle as a function of r only. Specifically,
you gotta write ṙ and θ̇ in terms of r. If you can’t get it, here’s a more
specific hint.

Try writing the orbit (a circle that passes through the origin) in polar
coordinates. Don’t worry about time, just parametrize the curve as r(θ).
Remember that everything that is usually conserved (~p, ~L, and E) is con-
served, and use the conservation laws together with the time derivative of
the orbit equation (i.e., r(θ)) to write down the same sort of ṙ(r) relation
we’ve already used twice.

Now, you can write the kinetic energy in terms of r and you can also write
the potential energy in terms of r (you’re given F , right? and F = −∂U

∂r ,
right?). So just make sure that the total energy is (because it’s conserved) a
constant that doesn’t depend on r – which means that any powers of r that
you have in E must (a) be the same, and (b) cancel each other out term by
term.

7 Spaceship Jitters

Note that only the direction of the velocity vector changes when the engines
fire.
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How does Ef , the energy after firing, compare to Ei, the energy before?
What about Lf versus Li (hint: write the new velocity in polar-coordinate
vector form)?

Use (7.12) and (7.10) from the notes to use your information about the
change in L and E to find the new eccentricity.

8 Boing, Boing

(a)

Set this up as a Lagrangian problem, using generalized coordinates based
on the position of the puck on the table (that determines the height of the
weight). What’s conserved here (hint, look at the Lagrangian, and the E-L
equations if necessary)?

When you calculate the E-L equation for r, you’ll get an equation of
motion for r̈. This gets even simpler for a circular orbit – think about
the behavior of r for a circular orbit. The trick here is to ignore θ and
imagine perturbing a circular orbit of radius R by a small amount ε – that
is, r = R+ ε. Use the E-L equation to find the equation of motion for ε, and
simplify it by a Taylor expansion of the nonlinear term for ε << R. Since
we’re talking oscillations, you had better end up with an equation for ε like
ε̈ ∝ −ε. That gives you the frequency of perturbation.

(b)

If the ratio of two frequencies is irrational, then the orbit can never close. If
you use this hint, I’d like to see a creative (well, some kind of) explanation
for why this is true – not just a statement that it is true. Oh... and you
should certainly show that my statement applies to this case!
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